If ∫tan6xdx=15tan5x+Atan3x+tanx−x+c, then A is equal to
∫tan6xdx=∫tan4x(tan2x)dx =∫tan4x[sec2x−1]dx =∫tan4x+tanx−∫tan4xdx =tan5x5−[∫tan2x[secx−1]dx] =tan5x5−[tan3x3−tanx+x]+c =tan5x5−tan3x3+tanx−x+c So, A=−13