wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x3(lnx)2dx=x432(a(lnx)2+b(lnx)+c)+d, where d is the constant of integration, then (a+b+c) is equal to

Open in App
Solution

x3(lnx)2dx=x432(a(lnx)2+b(lnx)+c)+d
Differentiating both sides w.r.t. x, we get
x3(lnx)2=x38(a(lnx)2+b(lnx)+c)+x432(2alnxx+bx)
x3(lnx)2=(a16+b8)x3lnx+a8x3(lnx)2+(b32+c8)x3
Comparing both sides, we get
a8=1a=8
a16+b8=0b=4
b32+c8c=1
a+b+c=84+1=5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Median
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon