∫x3(lnx)2dx=x432(a(lnx)2+b(lnx)+c)+d
Differentiating both sides w.r.t. x, we get
x3(lnx)2=x38(a(lnx)2+b(lnx)+c)+x432(2alnxx+bx)
⇒x3(lnx)2=(a16+b8)x3lnx+a8x3(lnx)2+(b32+c8)x3
Comparing both sides, we get
a8=1⇒a=8
a16+b8=0⇒b=−4
b32+c8⇒c=1
∴a+b+c=8−4+1=5