If ∫x132.(1+x52)12dx=A(1+x52)72+B(1+x52)52+C(1+x52)32, then
A
A=−435,B=−825,C=415
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A=435,B=−825,C=−415
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A=435,B=−825,C=415
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CA=435,B=−825,C=415 Let I=∫x132.(1+x52)12dx=∫x5.x3/2(1+x52)12dx Substitute1+x52=z2⇒52x3/2dx=2zdz ∴I=∫x545.z.zdz=45∫z2.(z2−1)2dz=45∫z2(z4−2z2+1)dz =45[z77−2z55+z33]+c=435(1+x52)72−835(1+x52)52+415(1+x52)32 Hence A=435,B=−825,C=415