The correct option is A a=1,b=−1
I=∫xln(x+√x2+1)√x2+1dx
Let t=√x2+1
or dtdx=x√x2+1
∴I=∫ln(t+√t2+1)dt
=tln(t+√t2−1)−∫1+t√t2−1t+√t2−1tdt
=tln(t+√t2−1)−12∫2t√t2−1dt
=tln(t+√t2−1)−√t2−1
Resubstituting the value of x,
=√1+x2ln(x+√1+x2)−x+c
On comparing we get a=1,b=−1