If ∫xln(1+1x)dx=f(x)ln(1+1x)+Aln|x+1|+Bx+C, then which of the following is(are) correct
(where C is constant of integration)
Open in App
Solution
∫x⋅ln(1+1x)dx↓II↓I
Applying integration by parts =x22ln(1+1x)−∫x1+x⋅(−1x2)⋅x22dx=x22ln(1+1x)+12∫x1+xdx=x22ln(1+1x)+12∫x+1−11+xdx=x22ln(1+1x)+12∫[1−11+x]dx=x22ln(1+1x)−12ln|1+x|+x2+C
Hence, f(x)=x22,A=−12 and B=12