The correct option is C log4
Let I=∫1√ex−1dx
Substituting t=ex⇒dt=exdx, we get
I=∫1t√t−1dt
Again substituting u=t−1⇒du=dt, we get
I=∫1√u(u+1)du
now substituting s=√u⇒ds=12√udu, we get
I=2∫1s2+1ds=2tan−1s=2tan−1√u=2tan−1√t−1=2tan−1√ex−1
Therefore,
∫xlog22tan−1(√ex−1)=π6⇒[2tan−1(√ex−1)]xlog2=π6
∴x=log4