Given :
∫(x+√1+x2)ndx=1a(n+1){x+√1+x2}n+1+1b(n−1){x+√1+x2}n−1+C ⋯(i)
Let I=∫(x+√1+x2)ndx
Now substituting,
x+√1+x2=z ⋯(ii)
∵(√1+x2+x)(√1+x2−x)=1
⇒√1+x2−x=1z ⋯(iii)
Solving (ii) and (iii), we get
x=12(z−1z)
⇒dx=12(1+1z2)dz
The integral becomes:
I=∫zn⋅12(1+1z2)dz
⇒I=12∫[zn+zn−2]dz
⇒I=12[zn+1n+1+zn−1n−1]+C
⇒I=12(n+1){x+√1+x2}n+1+12(n−1){x+√1+x2}n−1+C
Comparing with equation (i), We get
a=2 and b=2
∴a+b=4