The correct option is B a=12,b=−1,c=1
Given ∫xexcosxdx=aex(b(1−x)sinx+cxcosx)+d ....(1)
Consider, I=∫xexcosxdx
=xexsinx−∫(xex+ex)sinxdx
=xexsinx−∫xexsinxdx−∫exsinxdx
=xexsinx−xex(−cosx)−∫(xex+ex)cosxdx−∫exsinxdx
=xexsinx+xex(cosx)−∫xexcosxdx−∫ex(cosx+sinx)dx
or 2I=xex(sinx+cosx)−exsinx+d (∵∫ex(f(x)+f′(x))dx=exf(x)+C)
=ex((x−1)sinx+xcosx)+d
or I=12ex((x−1)sinx+xcosx)+d
So,by comparing with (1), we get
a=12,b=−1,c=1