If l1,m1,n1 and l2,m2,n2 are D.C.'s of the two lines inclined to each other at an angle θ, then the D. C.'s of the internal and external bisectors of the angle between these lines are
If l1,m1,n1 and l2,m2,n2 are D.C.s of two lines then,
l1l2+m1m2+n1n2=cosθ
The direction ratios of the internal angle bisector are l1+l2,m1+m2,n1+n2.
Hence, the direction cosines of the internal angle bisector are l1+l2√∑(l1+l2)2,m1+m2√∑(l1+l2)2,n1+n2√∑(l1+l2)2
where, ∑(l1+l2)2=(l1+l2)2+(m1+m2)2+(n1+n2)2=(l12+m12+n12)+(l22+m22+n22)+2(l1l2+m1m2+n1n2)=1+1+2cosθ=2+2cosθ=4cos2θ2
Hence direction cosines of internal angle bisector are l1+l22cosθ2,m1+m22cosθ2,n1+n22cosθ2
Similarly , D.R.s of external angle bisector are l1−l2,m1−m2,n1−n2
So, the direction cosines of the external angle bisector are l1−l2∑(l1−l2)2,m1−m2∑(l1−l2)2,n1−n2∑(l1−l2)2
where, ∑(l1−l2)2=(l1−l2)2+(m1−m2)2+(n1−n2)2=(l12+m12+n12)+(l22+m22+n22)−2(l1l2+m1m2+n1n2)=1+1−2cosθ=2−2cosθ=4sin2θ2.
Hence, direction cosines of external angle bisector are l1−l22sinθ2,m1−m22sinθ2,n1−n22sinθ2
Hence, options 'B' and 'D' are correct.