If L=limθ→0cos2(1−cos2(1−cos2(......(1−cos2θ))))sin(π(√θ+4−2)θ)exists and takes a non zero value, then find L.
A
√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B√2 limθ→0f(x)g(x)=limθ→0cos2(1−cos2(1−cos2(1−cos2θ)))sin(π(√θ+4−2)θ) limθ→0f(x)=1, and limθ→0g(x)=sin(00) Using the quotient rule of limits: If limx→af(x)g(x) exists and limx→af(x) also exists, then limx→ag(x) have to exist. ∴limθ→0sin(π(√θ+4−2)θ)=sin(limθ→0π(√θ+4−2)θ) ⇒sin(limθ→0π√4+θ+2)=sin(π4)=1√2 ∴L=√2