If L=limx→0x2sin2xx2−sin2x exists, then L is equal to
L=limx→0x2sin2xx2−sin2x=limx→0x4sin2xx2x2−sin2x
limx→0x4x2−sin2x=limx→0x4x2−(x−x33!+x55!+⋯)2
limx→0x4x2−(x2−2x43!+⋯higherpowersofx)
limx→0x42x43!+⋯higherpowersofx=123!=3
If Limx→04+sin2x+Asinx+Bcosxx2 exists, then the values A and B are