If (1+x)n=n∑r=0arxrandbr=1+arar−1andn∏r=1br=(101)100100!, then n equals to
Prove that:
n! / r! x (n-r)! + n! / (r-1)! x (n-r+1) = (n+1)! / r! x (n-r+1)!
If an=∑nr=01nCr then ∑nr=0rnCr equals