The correct option is B 2n2cosnx4
(1+x)n=nC0+nC1x+nC2x2+...nCnxn
And
(1−x)n=nC0−nC1x+nC2x2+...(−1)nnCnxn
Adding, we get
(1+x)n+(1−x)n=2[nC0+nC2x2+nC4x4+nC6x6+...]
Substituting, x=√−1=i we get
(1+i)n+(1−i)n=2[nC0−nC2+nC4x4−nC6x6+...]
2n2−1[einπ4+e−inπ4]=nC0−nC2+nC4x4−nC6x6+...
Hence
Solving the LHS, we get 2n2cos(nπ4)