If (1+x)n=n∑r=0Crxr=C0+C1x+C2x2+...+Cnxn , then calculated value of C20−C21+C22−C23+...(−1)nC2n if n=15 is equals
Method (i):
Let S
=C20−C21+C22−C23+....
Given (1+x)n=C0xn+Cnxn−1+⋯+Cnx0⋯(A) and
(1+x)n=C0−C1x+C2x2+⋯+(−1n)Cnxn⋯(B)
Multiplying (A) and (B)we
get [(1+x)(1+x)]n=(C0xn+C1xn−1+⋯+Cnx0)×(C0−C1x+C2x2+⋯+(−1)nCnxn)
(1+x2)n=A1x0+A2x1+A3x2+⋯xn(C20−C21+⋯+(−1)nC2n)+⋯+C0Cn(−1)nx2n
Coefficient of xn in
R.H.S.=C20−C21+C22−C23+⋯(−1)nC2n
Now for the coefficient of xn in L.H.S
Let us consider the general term in L.H.S.
Tr+1=nCr(−x2)r=nCrx2r(−1)r ∴ for xn putting 2r=n⇒ r=n2
∴T(n2+1)=nCn2(−1)n2xn
∴ coefficient of
xn in L.H.s.=nCn2(−1)n2 =⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩n!n2!n2!(−1)n2 if n=even0 if n=odd (as fractional factorial can not defined ) Now
In our problem n=15 which is odd ∴C20−C21+C22+⋯+(−1)15C215=0
or ∴C20−C21+C22−C23+⋯−C215=0