If (1+x)n=n∑r=0Crxr , then the value of the expression aC0+(a+b)C1+(a+2b)C2+⋯+(a+nb)Cn , equals
A
2nab(a+b)2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2na2n+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2a+nb)2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(2a+nb)2n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(2a+nb)2n−1 Simplifying we get a[nC0+nC1+nC2+....nCn]+b[nC1+2nC2+3nC3+...nnCn] =a2n+b(d(1+x)ndx)x=1 =a2n+b(n(1+x)n−1)x=1 =a2n+b(n2n−1) =(2a+bn)2n−1