The correct options are
A a0+a1+a2+a3+⋅⋅⋅+a300 is divisible by 1024
B a0+a2+a4+⋅⋅⋅+a300=a1+a3+⋅⋅⋅+a299
D a1=100
(1+x+x2+x3)100
=a0+a1x+a2x2....a300x300
Now by substituting x=−1 we get
0=a0−a1+a2−a3....a300
Hence
[a0+a2+a4+...a2k+...a300]−[a1+a−3+a5+...a2k−1+...a299]=0
Hence
a0+a2+a4+...a2k+...a300=a1+a−3+a5+...a2k−1+...a299 ...(i)
Now the term 'x' can be obtained in only one way.
That is
(x)1(x2)0(x3)0199
Hence
a1=100!99!.1!.0!.0!
=100
Also
∑a2k=∑a2k−1 ...from (i)
=124100
=2200−1
=2199
Hence it is divisible by 1024=210.