If ∣∣
∣∣111abca2b2c2∣∣
∣∣=(a−b)(b−c)(c−a)(a+b+c),
where a,b,c are all different,then the determinant
∣∣
∣
∣∣111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b)∣∣
∣
∣∣
vanishes when
The given determinant is ∣∣ ∣ ∣∣111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b)∣∣ ∣ ∣∣
Multiplying column 1, column 2 and column 3 by (x−a), (x−b) and (x−c) respectively, we get
1(x−a)(x−b)(x−c)∣∣ ∣ ∣∣x−ax−bx−c(x−a)2(x−b)2(x−c)2(x−a)(x−b)(x−c)(x−b)(x−c)(x−a)(x−a)(x−b)(x−c)∣∣ ∣ ∣∣
Taking (x−a)(x−b)(x−c) common from third row, we get
∣∣ ∣ ∣∣x−ax−bx−c(x−a)2(x−b)2(x−c)2111∣∣ ∣ ∣∣
Using row transformation, the above determinant can be written as
∣∣ ∣ ∣∣111x−ax−bx−c(x−a)2(x−b)2(x−c)2∣∣ ∣ ∣∣
As per the question, the above determinant can be written as
(x−a−(x−b))(x−b−(x−c))(x−c−(x−a))((x−a)+(x−b)+(x−c))
=(b−a)(c−b)(a−c)(3x−a−b−c)
The above expression is zero if 3x−a−b−c=0 (∵a≠b≠c)
⇒x=13(a+b+c)