If (ab)=(52)−3×(815)−3, then (ab)−2 is equal to
Given:
(ab)=(52)−3×(815)−3
⇒(ab)=(25)3×(158)3
⇒ab=25×25×25×158×158×158
⇒ab=11×11×11×34×34×34
⇒ab=(34)3
⇒(ab)2=((34)3)2
⇒(ab)2=(34)6 ---(1) [Since, (am)n=am×n]
⇒(ab)2=(43)−6 ---(2) [Since, (ab)m=(ba)−m,a,b≠0]
The correct option is C. Both (A) and (B)