The correct option is C −sin25
Given,
limx→−2−ae1/|x+2|−12−e1/|x+2|=limx→−2+sin(x4−16x5+32)
Now, limx→−2−ae1/|x+2|−12−e1/|x+2|=limx→−2−a−e−1/|x+2|2e−1/|x+2|−1=−a
Now, =limx→−2+sin(x4−16x5+32)
=limx→−2+sin⎛⎜
⎜
⎜
⎜
⎜⎝x4−(−2)4x−(−2)x5−(−2)5x−(−2)⎞⎟
⎟
⎟
⎟
⎟⎠=sin(4(−2)35(−2)4)=−sin(25)
⇒a=−sin25