The correct option is C 1
Substituting t=a+h
∴ t−a=h as t→a, h→0
∴ Required limit =limh→0∫a+haf(t)dt−h2[f(a+h)+f(a)]h3 (00 form)
∴ 0=limh→0f(a+h)−12[f(a+h)+f(a)]−h2f′(a+h)3h2
0=limh→0f′(a+h)−12f′(a+h)−12f′(a+h)−h2f′′(a+h)6h
0=limh→00−hf′′(a+h)2×6h,
0=−112f′′(a+0)
⇒ 0=f′′(a) ⇒ f′(x)= constant=c (say)
⇒ f(x)=cx+d, whose degree is 1
Hence, option D is correct.