The correct option is
A 4limx→0(3sinx−x3+x322xn)
Since this is of the form 00
so, applying L- hospital rule,
=limx→0(3cosx−3x222nxn−1)
Again 00 from, So by L-Hospital rule,
=limx→0(−3sinx−6x2)2n(n−1)xx−2
Again 00 form, So by L-Hospital rule,
=limx→0(−3cosx−32n(n−1)(n−2)xn−3)
Agin 00 from
=limx→0[3sinx2n(n−1)(n−2)(x−3)xx−4]
∵|≤sinx≤|, so the above has the limit value if the denominate is equal to 1
2n(n−1)(n−2)(n−3)x4−4=1
∵2n(n−1)(n−2)(n−3)≠1;so,
xn−4=1=x0⇒n−4=0
n=4 So option (A) is correct