The correct option is C 3
limx→1(1+ax+bx2)cx−1=e3
or elimx→1(1+ax+bx2−1)cx−1=e3
or elimx→1c(ax+bx2)x−1=e3
or limx→1c(ax+bx2)x−1=3
or limh→0c(a(1+h)+b(1+h)2)1+h−1=3
or limh→0(ca+b)+(ac+2b)h+bh2h=3
or ca+b=0 and ac+2b=3
or b=3 and ac=−3
Also, the form must be 1∞ for which a+b=0, i.e., a=−3 and c=1
⇒bc=3
Hence, option 'C' is correct.