If limx→−∞(√x6+ax5+bx3−cx+d−√x6−2x5+x3+x+1)=2 then
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is