If limx→0xasinbxsin(xc), where a,b,c∈R∼{0}, exists and has and has non-zero value. Then
limx→0xasinbxsinxc
=limx→0xa(sinxx)b(xcsinxc)xb−c
=limx→0xa+b−c..................∵limx→0(sinxx)=1
This limit will have non-zero value if a+b=c.
limx→0xasinb xsin(xc),a,b,b ∈ R ~ {0} exists and has non-zero value, then