The correct option is B 1
limx→0xn−sinnxx−sinnx
For n = 0,we have limx→01−1x−1=0
For n = 1,limx→0x−sinxx−sinx=1
For n = 2,limx→0x2−sin2xx−sin2x=limx→01−sin2xx21x−sin2xx2.
This does not exist.
For n=3,limx→0x3−sin3xx−sin3x=limx→01−sin3xx31x2−sin3xx3
For n=3, also given limit does not exist.
Hence, n=1