If log2=a and log3=b, then the value of [ log(1)+log(1+3)+log(1+3+5)+....+....+log(1+3+5+7+....+19)]
Prove that
(i)log 12=log 3+log 4
(ii) log 50=log 2+2 log 5
(iii) log(1+2+3)=log 1+log 2+log 3