wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If log2=a and log3=b, then the value of [ log(1)+log(1+3)+log(1+3+5)+....+....+log(1+3+5+7+....+19)]

−2[log1+log2+log3+....log7]=p+qa+rb, where p,q,r, are constants. What is the value of p+2q+3r if all logs are in base 10?

A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
26
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
29.397
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is A 29.397
We know:
1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
....
1+3+5+7+...+13=49=72
1+3+5+7+...+13+15=64=82
1+3+5+7+...+13+15+17=81=92
1+3+5+7+...+13+15+17+19=100=102
Replacing the value in the equation, we get:
[log(12)+log(22)+...+log(82)+log(92)+log(102)][log(12)+log(22)+...+log(72)]=p+qa+rb
log(82)+log(92)+log(102)=p+qa+rb
log(26)+log(34)+2log(2)+2log(5)=p+qa+rb
6log(2)+4log(3)+2log(2)+2log(5)=p+qa+rb
2log(5)+8a+4b=p+qa+rb
p=2log(5),q=8,r=4
p+2q+3r
=2log(5)+2×8+3×4
=29.397

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon