If log2aa=x, log3a2a=y and log4a3a=z, then xyz−2yz is equal to
We have,
log2aa=x,log3a2a=y,log4a3a=z
log2aa=x
logalog2a=x
Similarly,
log3a2a=y
log2alog3a=y
Similarly,
log4a3a=z
log3alog4a=z
Therefore,,
=xyz−2yz
=logalog2a×log2alog3a×log3alog4a−2×log2alog3a×log3alog4a
=logalog4a−2×log2alog4a
=loga−log4−loga−2×(log2a−log4a)
=−log4−2×(log2a−log2a−log2)
=−log4+2log2
=−log4+log4
=0
So, the value is 0.