If log4A=log6B=log9(A+B), then [4BA] ([⋅] represents the greatest integer function) is equal to
Open in App
Solution
log4A=log6B=log9(A+B)=k(say) ⇒A=4k,B=6k and A+B=9k⇒4k+6k=9k ⇒(23)k+1=(32)k Let (23)k=x ⇒x+1=1x ⇒x2+x−1=0 ⇒x=1±√52 but x>0 ⇒x=1+√52 ∴[4(BA)]=[4x]=[2+2√5]=6