logx+1(x2+x−6)2=4
(x+1)4=(x2+x−6)2
⇒2x3+17x2+16x−35=0
⇒(x−1)(2x2+19x+35)=0
⇒(x−1)(2x+5)(x+7)=0
⇒x=1,−7,−52
Now, from the given equation it follows that
x+1>0,x+1≠1,x2+x−6≠0
x>−1,x≠0,x≠−3,x≠2
⇒x∈(−1,0)∪(0,2)∪(2,∞)
So,x=1 lies in this range.
So, required value =2