wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If log(x2+y2)=2tan1(yx), then dydx=

A
dydx=x+yxy
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
dydx=2x+yx2y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dydx=xyx+y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D dydx=x+yxy
Differentiating both sides w.r.t. x, we get
ddx{log(x2+y2)}=2ddx{tan1(yx)}
or 1x2+y2×ddx(x2+y2)=211+(yx)2×ddx(yx)
or 1x2+y2{ddx(x2)+ddx(y2)}=2×x2x2+y2⎪ ⎪ ⎪⎪ ⎪ ⎪xdydxy×1x2⎪ ⎪ ⎪⎪ ⎪ ⎪
or 1x2+y2{2x+2ydydx}=2x2+y2{xdydxy}
or 2{x+ydydx}=2{xdydxy}
or x+ydydx=xdydxy
or dydx(yx)=(x+y)
or dydx=x+yxy

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon