Differentiation of Inverse Trigonometric Functions
If logx2+y2...
Question
If log(x2+y2)=2tan−1(yx), then dydx=
A
dydx=x+yx−y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
dydx=2x+yx−2y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dydx=x−yx+y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ddydx=x+yx−y Differentiating both sides w.r.t. x, we get ddx{log(x2+y2)}=2ddx{tan−1(yx)} or 1x2+y2×ddx(x2+y2)=211+(yx)2×ddx(yx) or 1x2+y2{ddx(x2)+ddx(y2)}=2×x2x2+y2⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩xdydx−y×1x2⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭ or 1x2+y2{2x+2ydydx}=2x2+y2{xdydx−y} or 2{x+ydydx}=2{xdydx−y} or x+ydydx=xdydx−y or dydx(y−x)=−(x+y) or dydx=x+yx−y