If M=a(m+n) and N=b(m−n) then the value of (Ma+Nb)÷(Ma−Nb) is :
If m≠n then (m+n)−1 × (m−1 + n−1) = ______
Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from
A to B is (a) mn (b) nm − 1 (c) mn − 1 (d) 2mn − 1
ab−mn+an−bm=?(a) (a−b)(m−n)(b) (a−m)(b+n)(c) (a−n)(m+b)(d) (m−a)(n−b)
If mC1=nC2, then