wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If mtan(θ30)=ntan(θ+120), then prove that cos2θ=m+n2(mn).

Open in App
Solution

mtan(θ30)=ntan(θ+120)mn=tan(θ+120)tan(θ30)
Applying Componendo and dividendo
m+nmn=tan(θ+120)+tan(θ30)tan(θ+120)tan(θ30)
m+nmn=sin(θ+120)cos(θ+120)+sin(θ30)cos(θ30)sin(θ+120)cos(θ+120)sin(θ30)cos(θ30)
m+nmn=sin(θ+120)cos(θ30)+sin(θ30)cos(θ+120)sin(θ+120)cos(θ30)sin(θ30)cos(θ+120)
m+nmn=sin(θ+120+θ30)sin(θ+120θ+30)=sin(2θ+90)sin180=2cos2θ
cos2θ=12(m+nmn)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon