If F(x)=∫x3x2logtdt(x>0) , then F1(x)=
F(x)=∫x3x2log t dt (x>0) then F′(x) F′(x)=[log x3⋅dx3dx−log x2dx2dx] =[3 log x(3x2)−2 log x 2x] =9(log x)x2−h log x (x) =(9x2−4x)log x