The correct options are
A In=In+2
B 10∑m=1I2m+1=10π
C 10∑m=1I2m=0
In=∫π−πsinnx(1+πx)sinxdx .....(1)
In=∫π−ππxsinnx(1+πx)sinxdx (∵∫baf(x)dx=∫baf(a+b−x)) .....(2)
Adding (1) and (2), we get
2In=∫π−π(1+πx)sinnx(1+πx)sinxdx
2In=∫π−πsinnxsinxdx
Here, f(−x)=f(x) i.e. even function.
2In=2∫π0sinnxsinxdx
⇒In=∫π0sinnxsinxdx
In+2=∫π0sin(n+2)xsinxdx
⇒In+2−In=∫π0sin(n+2)x−sinnxsinxdx
In+2−In=∫π02cos(n+1)xsinxsinxdx
In+2−In=2∫π0cos(n+1)xdx
=2[sin(n+1)x(n+1)]π0=0
⇒In+2=In
On substituting the values of n=0,1....
I2=I0
I3=I1
I4=I2.....
Here, I1=π
I2=2∫π0cosxdx=0
Hence, ∑10m=1I2m=0
∑10m=1I2m+1=I3+I5+.....I21=10π