wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


If In=ππsinnx(1+πx)sinxdx,n=0,1,2, , then

A
In=In+2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
10m=1I2m+1=10π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
10m=1I2m=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
In=In+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A In=In+2
B 10m=1I2m+1=10π
C 10m=1I2m=0
In=ππsinnx(1+πx)sinxdx .....(1)
In=πππxsinnx(1+πx)sinxdx (baf(x)dx=baf(a+bx)) .....(2)
Adding (1) and (2), we get
2In=ππ(1+πx)sinnx(1+πx)sinxdx
2In=ππsinnxsinxdx
Here, f(x)=f(x) i.e. even function.
2In=2π0sinnxsinxdx
In=π0sinnxsinxdx
In+2=π0sin(n+2)xsinxdx
In+2In=π0sin(n+2)xsinnxsinxdx
In+2In=π02cos(n+1)xsinxsinxdx
In+2In=2π0cos(n+1)xdx
=2[sin(n+1)x(n+1)]π0=0
In+2=In
On substituting the values of n=0,1....
I2=I0
I3=I1
I4=I2.....
Here, I1=π
I2=2π0cosxdx=0
Hence, 10m=1I2m=0
10m=1I2m+1=I3+I5+.....I21=10π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon