If p1,p2,p3 are respectively the perpendicular from the vertices of a triangle to the opposite sides, then the value of (cosAp1+cosBp2+cosCp3) is equal to
A
1r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1R
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1Δ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D1R In ΔABC let t=cosAp1+cosBp2+cosCp3=acosA+bcosB+ccosC2△ ⇒t=R[(2sinAcosA)+(2sinBcosB)+(2sinCcosC)]2△ [ from sine rule ] ⇒t=R(sin2A+sin2B+sin2C)2△=2R(sin(A+B)cos(A−B)+sinCcosC)2△ ⇒t=2R(sin(π−A−B)cos(A−B)+sinCcos(π−A−B))2△=2RsinC(cos(A−B)−cos(A+B))2△ ⇒t=4RsinAsinBsinC2△ ⇒t=4R(a/2R)(b/2R)(c/2R)2△=1R(abc4R△)=1R [ from sine rule ] Ans: B