The correct option is B 22n
P=∫10Xn−1(1−x)ndx ............(1)
X→(1−x)P=∫10(1−x)n−1Xndx ..............(2)
Equation (1) + (2)
2P=∫10Xn−1(1−x)n−1(1−x+x)dx⇒2P∫10Xn−1(1−x)n−1dx
Let x=sin2θ,dx=2sinθcosθdθ
2P=∫π/20(sinθ)2n−2(cosθ)2n−2.sin2θdθ⇒2P=122n−2∫π/2022n−2(sinθ)2n−2(cosθ)2n−2.sin2θdθ
2P=122n−2∫π/20(sin2θ)2n−2.sin2θdθ⇒2P=122n−2∫π/20(sin2θ)2n−1dθ
Let 2θ=t,dθ=dt2⇒2P=122n−1∫π0(sint)2n−1dt=122n−1.l2n−1
22n=l2n−1P