wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If P=2017+8x4x2e6(1x)+1dx, then find the value of [21P118], where [ ] denotes greatest integer function.

Open in App
Solution

Let P=2017+8x4x2e6(1x)+1dx=P1(say)

Using, baf(x)dx=baf(a+bx)dx

P=2017+8(2x)4(2x)2e6(1(2x))+1dx

P=2017+8x4x21e6(1x)+1dx

P=20e6(1x).17+8x4x2e6(1x)+1dx=P2(say)

2P=P1+P2=20(e6(1x)+1).17+8x4x2e6(1x)+1dx

2P=20(17+8x4x2)dx

2P=17[x]20+4[x2]2043[x3]20

2P=17×2+4×443×8

2P=1183P=593

21P118=21118×593=3.5

Hence, [21P118]=3

Hence, the correct answer is 3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon