If P(1+t√2,2+t√2) be any points on a line then the range of values of t for which the point P lies between the parallel lines x+2y=1 and 2x+4y=15 is
The point (2t2+2t+4,t2+t+1) lies on the line x + 2y = 1 for
Match the column
EquationName of the curve1)x2−2x−y−3=0P) Circle2)x2+3xy+2y2−x−4y−6=0Q) Parabola3)x2+y2−20=0R) Ellipse4)7x2+7y2+2xy+10x−10y+7=0S) Hyperbola5)6x2−xy−y2−23x+4y+15=0T) Pair of straight lines