Pn−Pn−1=cosnθ+sinnθ−cosn−2θ−sinn−2θ=cosn−2θ(cos2θ)+sinn−2θ(sin2θ−1)=−cos2θsin2θPn−4∴P6−P4=−cos2θsin2θP2P4−P2=−cos2θsin2θP0=−2cos2θsin2θP4−(cos2θ+sin2θ)=−2sin2θcos2θP4=1−2sin2θcos2θ∴P6=−cos2θsin2θ+1−2sin2θcos2θ=−1−3cos2θsin2θ2P6−3P4+1=2(1−3cos2θsin2θ)−3(1−2sin2θcos2θ)=2−3+1=06P10−15P8+10P6−1=6(−cos2θsin2θP6+P8)−15(−cos2θsin2θP4+P6)+10P6−1=6(−cos2θsin2θ(1−3sin2θcos2θ))+(−cos2θsin2θ(P4+P6))−15(−cos2θsin2θ(1−2sin2θcos2θ)+1−3sin2θcos2θ)+10(1−3cos2θsin2θ)−1=0