wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Pn=cosnθ+sinnθ, then prove that 2P63P4+1=0 and 6P1015P8+10P61=0.

Open in App
Solution

PnPn1=cosnθ+sinnθcosn2θsinn2θ=cosn2θ(cos2θ)+sinn2θ(sin2θ1)=cos2θsin2θPn4P6P4=cos2θsin2θP2P4P2=cos2θsin2θP0=2cos2θsin2θP4(cos2θ+sin2θ)=2sin2θcos2θP4=12sin2θcos2θP6=cos2θsin2θ+12sin2θcos2θ=13cos2θsin2θ2P63P4+1=2(13cos2θsin2θ)3(12sin2θcos2θ)=23+1=06P1015P8+10P61=6(cos2θsin2θP6+P8)15(cos2θsin2θP4+P6)+10P61=6(cos2θsin2θ(13sin2θcos2θ))+(cos2θsin2θ(P4+P6))15(cos2θsin2θ(12sin2θcos2θ)+13sin2θcos2θ)+10(13cos2θsin2θ)1=0

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon