The correct options are
A ϕ(x) increases in (a,2a)
C ϕ(x) decreases in (0,a)
given that f′′(x)>0 where 0≤x≤2a
Therefore, f′(x) is an increasing function.
ϕ(x)=f(x)+f(2a−x)
ϕ′(x)=f′(x)−f′(2a−x)
If ϕ(x) increases, then ϕ′(x)>0
f′(x)>f′(2a−x)
Since, f′(x) is an increasing function. Therefore, x>2a−x
⇒x>a
and if ϕ(x) decreases, then ϕ′(x)<0
f′(x)<f′(2a−x)
Since, f′(x) is an increasing function. Therefore, x<2a−x
⇒x<a
⇒0<x<a
Ans: A,C