If n∏i=1ai=1 and n∏i=1(1+ai)≥xn, where ai,i=1,2,…,n is positive real numbers, then the value of x is
Open in App
Solution
Using A.M≥G.M 1+a1≥2√a1 1+a2≥2√a2...1+an≥2√an From above, we get ⇒(1+a1)(1+a2)…(1+an)≥2n(a1a2a3…an)1/2⇒n∏i=1(1+ai)≥2n(n∏i=1ai)1/2∴n∏i=1(1+ai)≥2n(∵n∏i=1ai=1)