Since Sn=1.2+1.3+....+1.n+2.3+2.4+2.n+3.4+3.5+...+3.n+...+(n−1).n
But (1+2+3+...+n)2=12+22+32+...+n2+2Sn
→ (∑n)2=∑n2+2Sn
∴Sn=12[(∑n)2+∑n2]
=12⎡⎣(n(n+1)2)2−n(n+1)(2n+1)6⎤⎦
=12[(n2(n+1)24)−n(n+1)(2n+1)6]
=n(n+1)24[3n(n+1)−2(2n+1)]
=n(n+1)24(3n2−n−2)
=n(n+1)(n−1)(3n+2)24
∴Tn+1=Sn(n+1)!
=(n−1)n(n+1)(3n+2)24(n+1)!
=(n−1)n(n+1)(3n+2)24(n+1)n(n−1)(n−2)!
=(3n+2)24(n−2)!
=3(n−2)+824(n−1)!
=3(n−2)24(n−2)!+824(n−2)!
=3(n−2)24(n−2)(n−3)!+824(n−2)!
=324(n−3)!+824(n−2)!
Putting n=1, 2, 3, 4,. We get the series
=324(1(−3)!+1(−2)!+1(−1)!+10!+11!+12!+...)+824(1(−2)!+1(−1)!+10!+11!+12!+)
=324(0+0+0+e)+824(0+0+e)
=3e24+8e24
=11e24
Ans: 11