The correct option is C p2+1p2−1
secθ+tanθ=p------------eq1
using the formula, secθ2−tanθ2=1
(secθ+tanθ)(secθ−tanθ)=1
p∗(secθ−tanθ)=1
(secθ−tanθ)=1/p----------eq2
from eq 1 and eq2
2secθ=p+1/p
secθ=(p2+1)/2p
and tanθ=(p2−1)/2p
So, Cosecθ=secθ/tanθ=(p2+1)/(p2−1)
Answer (C) p2+1p2−1