If secΘ−tanΘ=p, then the value of sinΘ is
Consider the given equation,
secθ−tanθ=p …….(1)
Since equation (1),
secθ−tanθ=p
1cosθ−sinθcosθ=p
1−sinθcosθ=p
cosθ1−sinθ=1p
cosθ1−sinθ×1+sinθ1+sinθ=1p
cosθ(1+sinθ)1−sin2θ=1p
1+sinθcosθ=1p
cosθ1−sinθ=p
secθ+tanθ=1p …….(2)
Since, equation (1)and (2),
2secθ=p+1p
secθ=p2+12p
cosθ=2pp2+1
Now,
sinθ=√1−cos2θ
=√1−(2pp2+1)2
= ⎷(p2+1)2−4p2(p2+1)2= ⎷(p2−1)2(p2+1)2
sinθ=p2−1p2+1