The correct option is B x2−1x2+1
secθ+tanθ=x
1cosθ+sinθcosθ=x
1+sinθ=xcosθ
Squaring both sides,
1+sin2θ+2sinθ=x2cos2θ
1+sin2θ+2sinθ=x2(1−sin2θ)
(1+x2)sin2θ+2sinθ+(1−x2)=0
Thus, sinθ=−2±√4−4(1−x2)(1+x2)2(1+x2)
sinθ=−2±√(4−4+4x4)2(1+x2)
sinθ=−2±2x22(1+x2)
sinθ=−1,x2−1x2+1
Hence, from the options,
sinθ=x2−1x2+1