If sinα+sinβ=12 and cosα+cosβ=√32, then value of 3α+β is
from first equation we
get
2sinα+β2cosα−β2=12
from second equation we get
2cosα+β2cosα−β2=√32
we divide the 2 equations
tanα+β2=1√3
soα+β2=π6
so α+β=π3
.....(1)
now we square the 2 original equations and add them
1+1+2cos(β−α)=1
cos(β−α)=−12
so β−α=2π3.....(2)
from (1) and (2) we get
α=−π6 and β=π2
so 3α+β=0