If sin(ax)sin(bx)=cos(ax)cos(bx)(a,b≠0 & a≠b), then ∫sin(ax)+cos(bx)cos(ax)+sin(bx)dx is
A
1aln|secax|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1bln|sinbx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1aln|cosecbx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1bln|cosax|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D1bln|cosax|+C sinaxsinbx=cosaxcosbx(a,b≠0,a≠b) ⇒cos(a+b)x=0⇒(ax+bx)=(2n+1)π2 ⇒bx=(2n+1)π2−ax but we take bx=(4n+1)π2−ax only because at bx=(4n+3)π2−ax denominator becomes zero. ∫sin(ax)+cos(bx)cos(ax)+sin(bx)dx ∫tanaxdx=1aln|secax|+C ⇒1aln|cosecbx|+C ∫sin(ax)+cos(bx)cos(ax)+sin(bx)dx ∫cotbxdx=1bln|sinbx|+C ⇒1bln|cosax|+C