tan2A=tan[(A+B)+(A−B)]=tan(A+B)+tan(A−B)1−tan(A+B)tan(A−B) (i)
Given that, 0<A<π/4 and 0<B<π/4. Therefor,
0<A+B<π2
Also, −π4<A−B<π4 and sin(A−B)=1√10=(+)ve
∴ 0<A−B<π4
Now, sin(A−B)=1√10
⇒ tan(A−B)=13 (ii)
cos(A+B)=2√29
⇒ tan(A−B)=52 (iii)
From Eqs. (i), (ii) and (iii), we get
tan2A=52+131−52×13=176×61=17
Ans: 17