The correct option is A (0,2)
∵sinnα+sinnβ+sinnγ=32 and ∑cos(α+β)=λ
then for a=b=c=1 we have
∑cosα=0=∑sinα for
α,β,γ,−π<α,β,γ,≤π
∴A+B+C=0 and 1A+1B+1C=0
⇒A+B+C=0 and AB+BC+CA=0
⇒A2+B2+C2=0 and AB+BC+CA=0
⇒ei2α+ei2β+ei2γ=0 and ei(α+β)+ei(β+γ)+ei(γ+α)=0
Now
by equating real & imaginary parts we get ⇒cos2α+cos2β+cos2γ=0 and
cos(α+β)+cos(β+γ)+cos(γ+α)=0⇒1−2sin2α+1−2sin2β+1−2sin2γ=0 and cos(α+β)+cos(β+γ)+cos(γ+α)=λ=0
⇒sin2α+sin2β+sin2γ=32 & λ=0 ⇒sinnα+sinnβ+sinnγ=32
∴n=2,λ=0
∴(λ,n)=(0,2)