If sinθsin(1200−θ)sin(1200+θ)∈[−m4 , m4], then m=
f(θ)=sinθsin(120−θ)sin(120+θ) =sinθ12[(cos2θ−cos(240))] =sinθ2[2cos2θ−12] =(32−2sin2θ)sinθ2 f(θ)=sin3θ4 ∴ range of f(θ)ϵ[−14,14]=[−m4,m4]
∴m=1
If α=mC2, Then αC2 is equal to ..........